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A quantum relativity theory formulated in terms of Davis' quantum relativity 
principle is outlined. The first task in this theory as in classical relativity theory is 
to model space-time, the arena of natural processes. It is shown that the quantum 
space-time models of Banal introduced in another paper is formulated in terms 
of Davis' quantum relativity. The recently proposed classical relativistic quantum 
theory of Prugove~ki and his corresponding classical relativistic quantum model 
of space-time open the way to introduce, in a consistent way, the quantum 
space-time model (the quantum substitute of Minkowski space) of Banai pro- 
posed in the paper mentioned. The goal of quantum mechanics of quantum 
relativistic particles living in this model of space-time is to predict the rest mass 
system properties of classically relativistic (massive) quantum particles ("elemen- 
tary particles"). The main new aspect of this quantum mechanics is that provides 
a true mass eigenvalue problem, and that the excited mass states of quantum 
relativistic particles can be interpreted as elementary particles. The question of 
field theory over quantum relativistic model of space-time is also discussed. 
Finally it is suggested that "quarks" should be considered as quantum relativistic 
particles. 

1. I N T R O D U C T I O N  

Six years ago M. Davis (1977) established a relativity principle in 
quan tum (q)  theory. He  interpreted complete  Boolean algebras of  projec- 
t ions in a Hilbert  space as Boolean reference frames relative to which q 
measurements  are made.  Then he showed that the formalism of q theory is 
interpretable in terms of  this relativity principle; fur thermore he suggested 
that  the quant izat ion of  a classical (c)  theory means nothing other  than the 
applicat ion of  appropr ia te  Boolean valuation to the sentences of  the theory, 
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according to the work of G. Takeuti (1978). As a suggestion for further 
work he posed the following: "If  quantum theory embodies a relativity 
principle, it surely interacts with the other basic relativity principles. Thus, 
there should be a relativity theory combining special relativity and quantum 
theory in which the underlying group combines (perhaps as a direct prod- 
uct) the Lorentz and the unitary groups." 

According to this discovery and hypothesis one may expect that a 
relativity theory can be constructed, which uses, as basic principle, the 
relativity principle of q theory (we call this principle q relativity principle, 
while the relativity principle of Einstein c relativity principle), the space-time 
in this q relativity theory should be built up by applying the q relativity 
principle. Then this q relativistic space-time should combine with the 
special relativistic space-time (e.g., in a way as indicated in the hypothesis) 
and the results of the corresponding hybrid particle mechanics should 
manifest themselves in the elementary particle phenomenology in a clear 
way. 

We discuss in this paper the possibility of this q relativity theory with 
the corresponding q models of space-time based on q relativity principle, a 
concrete q space-time model, one particle mechanics in this q space-time, 
and field theory over this q space-time. In connection with the Davis guess 
we present a "superrelativistic" (Davis, 1977, p. 896) particle model in 
which the underlying space-time combines Minkowski space-time M 4 and 
this q space-time, the symmetry group is a direct product of the Poincar6 
and unitary groups. The corresponding hybrid particle mechanics finds 
application in hadron physics with a good experimental support. 

We note that a more detailed exposition of the theses of this paper can 
be found in Banal (1983a). 

2. QUANTUM SPACE-TIME MODELS BASED ON 
QUANTUM RELATIVITY PRINCIPLE 

Let H be a Hilbert space with inner product (I). Then ~ = ~ ( H )  
denotes the lattice of closed linear subspaces of H and ~ denotes a 
complete Boolean sublattice of ~ .  The q relativity principle of Davis 
involves the following concepts: Boolean frames ~ in ~ as q equivalent of 
inertial frames, "q inertial frames"; unitary transformations in H as coordi- 
nate transformations between q inertial frames; the unitary group of H as 
the symmetry group of q coordinate transformations; state vectors 4' ~ H as 
q equivalent of events, "q events"; the Hilbert space H as the q substitute 
of c event space I~ 4, "q event space." 
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Now, in Bahai (1983b) we outlined an axiomatic framework to ap- 
proach general space-time models, aiming at to resolve, at least partly, the 
deficiency in q logical approach to q theory that these approaches com- 
pletely lack models of space-time geometry as was noted by Finkelstein 
(1981a). We called, in this framework, those models of space-time to which 
irreducible q propositional systems of Piron (1976) belong as (relativistic) 
causal logic, q space-times. According to this approach a space-time model 
is determined by the corresponding causal logic l; events in the space-time 
model are the atoms of l, symmetries are generated by automorphisms of l, 
the event space is the space which realizes l via its "power structure," two 
events are causally connected (disconnected) if they are noncompatible 
(compatible). When l is an irreducible q propositional system then l is 
realizable, disregarding some exceptional cases, by a 9~(H) where H is a 
(generalized) Hilbert space (Piron, 1976). Events are represented in H by 
rays and, if H is a complex Hilbert space of at least dimension 3, 
symmetries are generated by unitary (or anti-unitary) operators in H. Two 
events are causally connected (disconnected) if (q~llq'2) 4:0 ( = 0) for the 
vectors in the corresponding rays. Now, if we interpret complete Boolean 
algebras ~ in 9~(H) as Boolean reference frames ("q reference frames") 
then we see that the q space-time models in Banai (1983b) can be for- 
mulated in terms of q relativity principle of Davis. Therefore we can call 
these space-time models q relativistic space-time models. 2 

One can easily verify that the main concepts of c relativity theory, such 
as events, locality, particle, covariance, and invariance, have clearcut repre- 
sentatives in q relativity theory (see Banal, 1983a). We consider briefly the 
particle concept only. 

As q objects, the particles cannot be viewed as material points follow- 
ing a world line, but rather, in keeping with Heisenberg's (1960) and 
Wigner's (1939) observations, as constructs empirically associated with 
operational procedure for measuring position and momentum, and theoreti- 
cally associated with irreducible representations of the symmetry group of 
the applicable relativity. In q relativistic physics, this is Davis' relativity 
with the unitary group G as symmetry group. If the space defining G is the 
(complex) Hilbert space H then H carries trivially an irreducible represen- 
tation of G. If the system of self-adjoint operators (P, X) in H is an 
irreducible system then the self-adjoint generators of G are the functions of 

2Note that the set of atoms of a maximal Boolean algebra in ~ ( H )  determines a maximal set 
of causally disconnected events, because it is generated by a complete orthonormal basis of H. 
Thus such a set of atoms determines a "spacelike hypersurface" in the corresponding q 
relativistic space-time (Banai, 1983b). 
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(P, X), and the basic observables of the q particle are represented by the 
operators (P, X). Any other observable of the q particle is a function of 
(P, X). The q event space H describes the set of possible coordinates of the 
q particle with respect to a particular q reference frame and G describes the 
possible geometrical symmetries of the q particle (cf. Finkelstein, 1981b). 
(On the analogy of I~ 4, we may call H the configuration space of the q 
particle.) The arena of the existence for the c particle is the manifold •4, 
while the arena of existence for the q particle is the projective geometry 
represented by H. 

We note that the universe V I~  of the ~-valued model (or q set theory) 
of Takeuti (1981) involves all Boolean reference frames in ~ .  Thus the 
appropriate language of q relativity theory we advocate in this paper may 
be provided by Takeuti's q set theory (cf. Banai, 1982b, 1983a, c). 

3. THE QUANTUM RELATIVISTIC SUBSTITUTE OF 
MINKOWSKI SPACE 

We present now a concrete q space-time model. This is the q relativis- 
tic substitute of M 4 proposed in Banai (1983b). It is important to note that 
the results and the cq Minkowski space-time model of Prugove~ki (1983) 
open the way to a consistent introduction and interpretation of this q 
space-time model. Because, as q mechanics presupposes the existence of its 
c limit, c mechanics (see Landau and Lifshitz, 1958), in a similar way q 
relativistic q space-time and mechanics in it presupposes the existence of 
their consistent cq counterparts, cq space-time, and cq mechanics, respec- 
tively. 

To start the discussion, let us consider the following three concepts of 
physics: (a) pointlike particle (object), (b) Lorentz inertial frames and hence 
Lorentz transformations, (c) Heisenberg uncertainty principle. There are 
growing evidences that these three concepts are operationally not compati- 
ble (cf. Prugoverki, 1978, 1981; Kaiser, 1981). One way out of this concep- 
tual difficulty is the rejection of concept (a) and hence the retention of 
concepts (b) and (c). This attitude was chosen, e.g., by E. Prugove~ki (1981, 
1983, for a review). He replaced concept (a) by a stochastically extended 
particle concept. The second way is the drop of concept (c), this attitude was 
chosen, e.g., by Snyder (1947) (see Banai, 1983a). The third way out of this 
impasse is the rejection of concept (b), this attitude was chosen by Banai 
(1983b). According to q relativity theory we replace the concept of Lorentz 
frames by that of q reference frames. 

E. Prugove~ki (1983) unifying in a consistent way c relativity and q 
theory in terms of stochastic spaces found that a c relativistic q particle (cq 
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particle or elementary particle) must be characterized not only by its rest 
mass m, charge e, spin s etc., but by a proper wave function ~, too. This 
cO (x) is a rotationally invariant real element of the Hilbert space LE(R 3) and 
describes the spatial extension of the cq particle in its rest Lorentz frame L, 
placed at the origin of L at the instant q0= 0.' In this framework, cq 
"space-time is envisaged as consisting of "points" which can be occupied 
by (such) extended elementary particles, and therefore can be envisaged as 
represented by the proper wave functions of such particles" (Brooke et al., 
1982, p. 1731). But the proper wave functions cp are elements of the Hilbert 
space L2(R 3) which represents a projective geometry. Hence, the "points" 
of cq space-time can be represented by appropriate points of this projective 
geometry. Thus we surmise that if we dig further into the microscopic 
domain of space-time, then we find there this projective geometry as an 
underlying geometrical structure of space-time, which gives rise, as higher 
level constructs, in order to Prugove~ki's space-time model in the cq level, 
and to Einstein's model in the c level. This projective geometry can be 
considered as the event space of a q relativistic space-time model. Because 
L2(R 3) can be considered as the configuration space of a q relativistic q 
object (particle) we can probe the microscopic structure of space-time in the 
q relativistic q level (simply q level) via the observation of such a q object. 
The cq particles of Prugove~ki should be the excited states of this q particle, 
i.e., the proper wave functions of the cq particles should be associated with 
different "excited states" of this q particle. 

The declared goal of this theory is to probe the microscopic structure of 
space-time via the measurements of a q particle with space L2(R 3) which is 
pointlike and obeys Heisenberg's uncertainty principle. Therefore, accord- 
ing to the basic tenets of q theory (cf. Sachs, 1982), we collect all the 
measuring apparatuses corresponding to the Boolean reference frames in 
~(L2(R3)) into one, arbitrary, but fixed, Lorentz frame L. According to the 
results of Prugove~ki (1983) above, we will interpret L as the c rest frame of 
the cq particles generated by the rotationaUy invariant states of the q 
particle. If we implement a measurement on the q particle with respect to 
one of its Boolean reference frames at the instant qO = 0 in L and we find 
that the q particle is in the rotationally invariant state ~0 then we say that 
we observed a cq particle with proper wave function ~ which was at rest at 
qO = 0 in L. The cq particle is described in another Lorentz frame with the 

L (E,,, q0) (see Prugove~ki, 1981, corresponding element of its state space 2 § 
1983). 

Let us consider the observables of the q particle. The irreducible 
system of self-adjoint operators in L2(R 3) is (x., - iX7 x). We interpret this 
system as the basic 3-position ~ and 3-momentum ~ of the q particle, 
respectively, Heisenberg's uncertainty principle then is obviously satisfied. 
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All other observables are functions of these operators. In the procedure of 
defining other main observables of the q particle (such as the time coordi- 
nate, the energy, the mass etc.) we use the rotational invariance as a natural 
guiding principle because of our interpretation. Let us see the 3-velocity 
observable ft. All possible cq particles generated by this q particle are at 
rest in L at the instants of their observation. Therefore we postulate that 
the q particle is at rest in L and thus relative to all of the Boolean reference 
frames in L too. Then 

f i = 0  (1) 

But the relation p = mu satisfied by both the c particle and cq particle then 
holds no longer true anyway. We must associate a mass observable fn with 
the q particle, which is the function of ~ and ~, i.e., we cannot imagine this 
q particle as a massive point with mass m but rather as a pointlike q object 
which can have different mass states. 

Before considering the mass observable rh let us see the coordinate 
time observable ~o and the canonical energy observable P0 of the q 
particlefl By definition Po generates the translations on the spectrum of ~0, 
and vice versa, which means that 

[ Po, Xo] = -T- i (2) 

Both signs yield the same Dirac's uncertainty principle 

txp0 ax0 >/�89 (3) 

which is the physical content of (2). For this reason we consider simulta- 
neously the two cases in Banai (1983b). We note that the proper time 3 Xo 
and 3-position ~ of the q particle can be in a consistent way related to the 
internal 4-position (Qo, Q) of the cq particles generated by the q particle, 
where Q satisfy the c relativistic CCR [Q~,, Pv] = -  ig~, (see Prugovetki, 
1982), as follows. Let the q particle be in the rotationally invariant state 
which then defines a cq particle resting at L. Then the uncertainties 

AX, = ~(Xi '  (1))( = ~ l (  "~' -- X i ) 2 ~ )  1/2' Xi = Lxpi = 3 ( p , ,  ,p) 

are the same as the uncertainties AQ~ and Ap~ established in the internal 

3Following from our postulate, -~0 may be called the proper time observable of the q particle. 
These two notions, i.e., the coordinate time and proper time, would coincide in this q 
relativistic space-time model. 
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3-position and 3-momentum of the cq particle corresponding to q, by an 
observer that travels with the cq particle. And the uncertainties Ax o = 
6(Xo, q') and Apo = 6(,b o, q~) are equal to the uncertainties Aqo and AP o 
displayed by the internal time operator Qo and energy operator P0 of the cq 
particle in the mean value qo and Po of the (stochastic) time and energy, 
respectively, measured by an observer traveling with the cq particle (cf. 
Prugove~ki, 1982). Thus Ax o can be interpreted as the lifetime of the state q~ 
and hence the proper life-time of the cq particle corresponding to q~. 

By means of P0 we can define the time derivative of an observable P of 
the q particle, according to q theory, as follows: 

dF/d2 o ,= i[ P0, F ]  (4) 

For  example, the 3-velocity is, according to its c definition, 

,= d /d o = i [  Po,  = 0 (5) 

taking into account our postulate (1). Then Po must be the function of ~. 
The simplest rotationally invariant choice for Po is 

Po = h - l ( x i x i "  ) 1/2 = h-l"~" (6) 

where h is a constant of dimension (length) 2 = GeV -2 using natural units 
in this paper (cf. Banai and Lukhcs, 1983a). Then we can satisfy (3) with the 
rotationally invariant combination 

"~0 = "1- i~ l ( XiO // OXi "~- 1) (7) 
r 

of the operators x- and - i ~7x,4 and we observe that 

[~0,~] =_+ ih (8) 

This commutation relation yields the following uncertainty principle 

Ax o Ar >/ lh  (9) 

4The mathematical subtlety as to the self-adjointness of .~c o in (7) is studied in details in Banal 
(1983b) and found that Yc o can be represented with a bona fide self-adjoint operator which is a 
rotationally invariant combination of x- and - i ~7 x and has a form similar to the symmetric 
operator in (7), which in spherical coordinates has the form Yr = +ih(1/r)(O/Or)r= 
+ih(a/Or +l/ r ) ,  i.e., it is proportional to the radial component of the 3-momentum 
~= - i V x ,  
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Exactly this principle, respectively, relation (8) is our starting point in 
constructing this q space-time in Banal (1983b). The principle (9) means 
that the q particle under consideration is not localizable in relation to the 
fixed L better than permitted by (9). 5 We see from (6) that the energy of the 
q particle rises linearly with its radial distance from the origin of L involved 
in the empirical definition of the q particle. This origin fixing is also 
reflected in relation (8) which is invariant under time translations but 
singles out the origin of L. This is an immediate consequence of the 
operational definition of the q particle (cf. Banai, 1983a). This feature of 
defining the q particle can be grasped the most striking way when we 
consider the time derivative of [a and its radial component Pr, which by c 
analogy gives the force and its radial component, respectively, acting on the 
free q particle. They are 

f ,= d[~/d2 o = i[ p0,~] = _ h - l ~ / r  (lO) 

fr := dpJdSco = i[ Po, Pr] = - h-1 (11) 

Consequently, a constant force acts on the free q particle in this q space-time, 
forcing the q particle to the origin of  its defining f rame  L.  Equation (10) 
means that the 3-momentum [~ of the q particle is not conserved with 
respect to its time -~0, while the 3-momentum of the cq particles generated 
by the states of the q particle is, of course, conserved with respect to their 
time qO (cf. Banai, 1983a). 

Now we have the time and space position observables .% and ~ of the q 
particle. They commute according to 

[2~, 2~] = _+ iK4~,  A~,~ = 1 (:t,0) (12) 
r 

Let us consider the square of the space-time position observable 2 = (2 o, ~). 
In c relativity this is x 2 ~ ~ = g . . x  x . The  indefinite metric &,. follows from 
the causal relation of the points (representing c events) in M 4. In q 
relativity the causal relation of the rays (representing q events) in L2(R 3) is 
expressed by the relation (qh[O2). 01 and ~2 are causally connected if 
(qh[r 0 and disconnected when (qhlqh)= 0. Following from the posi- 
tive definiteness of the metric of Lz(R3), we have (4~]q')= [[q,[[2 > 0 for 
every vector r ~ 0 in L2(R3), i.e., there are no "spacelike" (or nonzero 

5Relation (9) can still be read as follows. The smaller the Ar, the greater the Ax o and vice 
versa, i.e., if the q~ for which Ar means the spread of ?" is highly concentrated near to a point 
then the lifetime of q~ is nearly infinite. In other words, the less smeared the cq particle 
corresponding to 9, the longer its lifetime. 
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" t imel ike")  vectors in the event space L2(•3). These notions have no 
meaningful  counterpar ts  in q relativity (with Hilbert  spaces of  positive 
definite metric). The  indefinite metric of  c relativity should appear  first on 
the cq level of  microscopic world which lies over the q level of  nature 
(according  to the philosophical suggestion of  this paper,  cf. Table  I and 
Section 7). [The pho ton  mediat ing the electromagnetic interaction is also a 
cq particle. The  properties of  this cq particle, respectively, interaction play a 
centra l  role in the operational  definition of  the Lorentz  symmetries and 
hence of  the causal relation of  c events. Thus  q relativity theory should 
p roduce  in a natural  manner  the photon  as a cq particle to obtain the 
symmetr ies  of  the cq level and c level of  nature (cf. Section 7).] Therefore  if 

TABLEI 

Classical relativistic 
classical level 

Classical relativistic 
quantum level 

Quantum relativistic 
quantum level 

Deterministic geometry (c diff. manifold) 
c reference frame (deterministic Lorentz frame) 
c relativity (deterministic Poincar6 group) 
c particles (mass points along deterministic world 

lines) 

c mechanics (deterministic equations for motion 
with parameter mass and continuous energies) 

c field theory (deterministic fields over a single 
c space-time) 

Stochastic geometry (cq diff. manifold) 
cq reference frame (stochastic Lorentz frame) 
cq relativity (stochastic Poincar~ group) 
cq particles ("elementary particles," photons, W 

bosons) 

cq mechanics (energy eigenvalue problem with parameter 
mean time and parameter deterministic 
mass) 

cq field theory (quantized fields over a single cq 
space-time) 

Projective geometry ( q manifold) 
q reference frame (Boolean frame) 
q relativity (unitary group) 
q particles ("quarks," "gluons") 
q mechanics (mass eigenvalue problem with operator 

time) 

q field theory [(1) q fields (depending on the coordinate 
time-space operators) inside a single q space-time) 
(2) canonically quantized fields 
(depending on the vectors of events) 
over a single q space-time] 
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we define the square of s as ~ 2 ^~ ̂  = gz,x x = s _ .~s then in the spectrum 
of s could appear negative values which would not have clearcut meaning. 
From these reasons the most natural (and symmetric) choice for defining 
the square of .~ is 

:=  = + + + ( 1 3 )  

i.e., with positive definite metric 6 ~ -  (1,1,1,1) which then guarantees the 
nonnegativity of the spectrum of kz and thus the possibility of interpreting 
.~2 as the (length) 2 observable for the q space-time position of the q 
particle. Then, by (7), (13) gives a purely discrete positive spectrum x,,2 _- 
4hn+3,  n = 0 , 1  . . . . .  for i2 (Banai, 1982a), which implies that the q 
particle can take only discrete space-time position values in q space-time, 
i.e., it moves ("jumps") on a lattice, in the X o - r  plane, with spacing 
(2h) 1/2. Note that the negative sign of (2) hence the positive sign of (8) 
conforms to the positive definiteness of (13) (Banai, 1983b). 

The energy and momentum observables P0 and ~ of the q particle 
commute according to 

[ p,, p,] = ih-l..~, (14) 

Let us define the square of the "4-momentum" observable p -- (P0, [~), from 
the same reasons as in the case of .~, as follows 

p2 ,__ pg + p~ +/32 +/3~ = 6,,,/3,/3,, (15) 

In c relativity p2 = m z, therefore, using this analogy, we associate the mass 
square observable rh z of the (spin-0) q particle with /32 (cf. Banal and 
Lukhcs, 1983a), i.e., 

pn ~ ,=/3z =/32 +/3i/3i (16) 

This, by (6), implies purely positive discrete spectrum for the mass square of 
the q particle, namely, 

2 2 h - t ( 2 d + l + 3 ) = 2 h - l ( n + ~ ) ,  n = 2 d + l = 0 , 1 , 2  .... (17) m n = 

In this way we have defined the main observables of the q particle, namely, 
the proper time 3 ~0, the energy t3 o and mass square rh 2 of the q particle. 

4. QUANTUM MECHANICS OF QUANTUM RELATIVISTIC 
PARTICLES 

According to the preceding interpretation the goal of q mechanics of 
this q particle is to predict the rest frame properties of cq particles including 
the rest mass, too. Equation (10) may be regarded by c analogy as the 
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equation of motion for the free scalar q particle. The pure states of the 
q particle coincide with the events of q space-time. The time evolution 
of the q particle is generated by the unitary map ~ C = U(xo)q,= 
{exp[ -  iXoPo] } ep of L2(R 3) onto itself, where x 0 ~ R. The cq Klein-Gordon 
equation now is replaced by the (mass) 2 eigenvalue equation 

p2r ~ ~ L2(R 3 ) (18) 

which gives the (mass) 2 spectrum (17) for the free q particle. The interac- 
tion of the q particle with an external field given classically by a 4-vector 
potential A~ = A~,(x0,x ) can be described by applying the usual algorithm. 
In A~,(Xo,X ) x 0 and x are replaced by x0 and ~, respectively, satisfying (12) 
and summations with g~,~ in A~, are converted into summations with 8~,~. 
The canonical "'4-momentum" observable of the system from its c counter- 
part is ~'~ = p~, + eA~(YCo,f 0 satisfying (14). Then ,b~ = P~ - eA~, and the 
(mass) 2 eigenvalue equation (18) reads as follows: 

(~ .  - e ~ ) ( ; ' .  - e ~ ) ~  : m ~ ,  ~ ~ L~(R ~) (19) 

(summation for tt is understood with 8~, of course). For rotationally 
invariant A~, according to our interpretation, an eigenstate ~, with eigen- 
value m 2 may be regarded as the proper wave function of a cq particle with 
mass m~, i.e., we associate with ~, the c relativistic wave function ~ ( k ) =  
m~2~(k) ,  k = ( + ( k 2 +  m2~ x/2 I~ which then generates, by Prugove~ki's 

�9 " n l  , - - ] ,  

(1983) results, the Poincara-invariant subspace 2 + L (E, , ,  */,) in the Hilbert 
L (YI,,o). Thus, e.g., the cq particles corresponding to the (mass) 2 space 2 + 

spectrum (17) of the free scalar q particle lie along linear Regge trajectories. 
Consequently, they may be identified as meson states in the cq particle 
phenomenology. 

Up to now we have considered only scalar q particles. For a spinor q 
particle, using Dirac's idea, we may assume a mass operator rh linear in 
momenta. The leading terms are the same as in (16) if 

th=?~P,=iToPo+'Y~,  ? = (iTo,'Y) (20) 

where ~,~'s are Dirac's matrices. Then for F~/2 w e  obtain by (14) 

,~2 =__ _ % P 3 ~  = P~P~-  ~ [  P~, b~] = p0 ~ + i ,  2 - ( i / 2 )  h -  1 ~ , ~  

- =  p~ +f,2 - ~ - ~ , / r  (21) 

where 0~ = (1/2)(?~,$,~ - ~ ,~)  = (1/2)(in,  iY.). The new term in rh 2 depends 
only upon the spin of the spinor q particle (see Banai and Lukhcs, 1983a). 
In the case of the interaction, by the substitution p~ ~ p~, - e ,~  we get the 
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rh 2 observable 

rh 2 = (~b~ - e.4~) (~b~ - e.4~,)- �89 [ ~b~ - eA~, P~ - e/l~] 

= ( e - e~zl) 2 -  (i/2)~I-10~vh~v + (i/2)e6,~P~,,- ( e2/2)6~[ A~, .4~] 

=(~-e~)2+ h-la~/r-e(~..~a +ar (22) 

where P~ = 0~.4~ - 0~.4~ = i[~b~, - ~ ] -  i[P~, A.] = ( -  ~, ~ ) .  The new terms 
in rh 2 predict the interaction of the spin of the q particle with the external 
field. It is worthwhile to note that we started with a non-self-adjoint linear 
expression (20) for rh and we obtained a purely self-adjoint rh 2 observable 
in (21) and (22) (more precisely, (22) is self-adjoint if 0,,[.4,, ,4~] is 
self-adjoint). Now the case is reversed than in the case of Dirac's (1928) 
equation where one starts with a self-adjoint linear expression and then gets, 
in the case of the interaction, a non-self-adjoint second-order expression. 

We can conclude that the major new aspect of q mechanics of q 
particles is that it provides true mass eigenvalue equations for the possible 
masses of elementary particles. In cq mechanics the central problem is the 
energy eigenvalue problem; in q mechanics that would be the mass eigen- 
value problem. The lifetimes of different mass states and the decay modes of 
higher mass states into lower ones can be calculated using purely the tools 
of this q mechanics. Hence the model would be capable of dealing with the 
corresponding unstable cq particles calculating their lifetimes and decay ' 
modes. 

Let us consider yet briefly the cq limit "h---, 0" of q mechanics in 
q space-time. Exactly as in cq mechanics the limit "h ~ 0" is defined 
(von Neumann 1955), the limit "h---, 0" is defined by those elements of 
L2(R 3) for which the product Ax 0 Ar is minimal, i.e., Ax 0 Ar = �89 These 
elements of L2(R 3), up to phase factors, have wave-packet-like form q~<~)(x) 
with r = (h/y)  ~/2, 3' > 0. When "h ---, 0" these q events concentrate on the 
points of c event space M 4, the corresponding extended cq particles shrink 
to pointlike particles. Therefore, when we take the formal limit "h ---, 0," q 
mechanics over q space-time, via the consistent cq mechanics of Prugove~ki 
(1983), turns into the (not truly consistent) conventional cq mechanics and 
q space-time, via the cq space-time of Prugove~ki (1983), reduces to c 
space-time (cf. Banai, 1983a, b). 

5. A SUPERRELATIVISTIC PARTICLE M O D E L  

We now present a "superrelativistic" particle model for hadrons on the 
basis of the work Banal (1982a). In the above considerations the models of 



Quantum Relativity Theory and Quantum Space-Time 1055 

space-time follow one another in a hierarchical order. In this simple model 
we avoid the intermediate cq model of space-time, and the q model and the 
c model of space-time will simply be juxtaposed. Therefore this model is 
admittedly not consistent in all respects; nevertheless, it helps to analyze 
some properties of hadrons and to compare the current quark hypothesis 
with that of q particles in q relativity theory. The model is motivated by the 
c relativistic quark models (Feynman et al., 1971; Kim et al., 1979), and 
reflects the expectation that space-time is q in regions of size - h, while it 
is c in regions of size >> h. 

The hadron (meson, for the sake of simplicity) consists of two pointlike 
particles, "quarks," q and ~ with positions x q and xfl, respectively, at c 
level. Let X~, and x~ denote the center-of-mass (c.m.) coordinates describing 
the hadron as a whole and the relative coordinates describing the internal 
motion of quarks, respectively. In the model, we approximate in such a way 
that the c.m. coordinates remain Lorentz variables and they span the 
Minkowski space in which the hadron as a whole moves, while the relative 
coordinates are subjected to the quantization condition (8). Thus the 
internal space of the hadron becomes q space-time in which the quarks 
move. Then the state function of the hadron has the form ~ -- ~(X,x),  i.e., it 
depends upon seven variables (X, x) in such a way that one can pursue all 
methods of conventional cq theory in the X~ variables, but one should 
apply the methods of q mechanics discussed above in the x variables to 
describe the internal quark dynamics. One can regard the state function 
~(X,x)  as a function describing an extended particle in M 4, where the 
spatial extension of the particle in its rest frame is described by the x 
variables. The total symmetry group of the hadron is the direct product of 
the Poincar6 group of the X variables and the unitary group of internal q 
space-time. In this way, this model combines c relativity with q relativity in 
the way suggested by Davis (1977). 

Now we can regard (6) as that the energy rises linearly with the radial 
quark separation, which then gives rise to the "confining force" in (10), 
respectively, in (11). It follows at once that the quarks are permanently 
confined inside a sequence in time of space-time bubbles of size - ~i around 
the c.m. world line of the hadron. Considering the internal quark dynamics, 
we can see that the hadronic mass spectrum is generated by the internal 
quark mass level excitation. We can write for the (mass) 2 of the meson, 
assuming the additivity of mass, 

^ 2 2 rh2 p2 M2=(mo+m) = mo +2mor~ + = +2(p2)l/2(p2)l/2+p2 

(23) 
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If  we suppose  that  the quarks  are free particles in internal  q space-t ime,  
then f rom (17), we obtain  the (mass)  2 spect rum 

M ~ = { m o + [ 2 h - ' ( n + ~ ) ] ' / 2 }  2 

=m~+2mo[2h- l (n+~)]x /2+2h- l (n+ 3) (24) 

I f  we set m 0 = 0 then, in this approximat ion ,  the model  predicts  an equal 
spac ing  rule with a spacing 2h -x ,  and implies l inear Regge trajectories with 
the s ame  slope �89 for mesons  and  baryons.  These predict ions agree well 
with the exper iment  for low-laying hadrons  (see F e y n m a n  et al., 1971; K i m  
and Noz,  1972). N o w  the measured  value of the Regge slope gives the 
fol lowing fit for  h: 2h -x = 1  GeV 2 then h = 2 GeV -2 = ] f m / G e V .  

In  cons t ruc t ing  this hybr id  model  we envisaged at  the cq level two cq 
part icles  ( " q u a r k s " )  with conf igurat ion space M 4 •  M 4, as the const i tuents  
of  a meson.  Then,  in the model,  we replaced these two cq particles with one 
cq part ic le  of  mass  m o and one q particle of mass  opera to r  rh, the 
conf igura t ion  space of this composed  system is M 4 X L2(R 3).6 This  s imple 
mode l  possesses the basic characterist ics of the current  quark  model  of  
hadrons .  Fur the rmore ,  it can reproduce  the main  results of  c relativistic 
qua rk  models ,  and explain some assumpt ions  in these models  [e.g., the 
equal i ty  of  the Regge slope for mesons  and ba ryons  (see Banal,  1982a)]. 7 In  
the qua rk  mode l  hadrons  (cq particles) are envisaged as the excited states of  
" c o n f i n e d  qua rks"  (also cq particles), in the present  theory hadrons  are the 
exci ted states of  q particle (particles). 6 The  " con f inemen t "  of  q part icle 
(part icles)  6 inside the hadrons  now has a s t ra ightforward (purely q theoreti-  
cal) exp lana t ion  as we saw above (cf. Section 7). 

6. FIELD THEORY OVER Q U A N T U M  S P A C E - T I M E  

Let ~ l ( x ) ,  ~,2(x) . . . . .  ~,n(x) be the n real field variables of a c relativis- 
tic local field theory ( C R L F T )  over  M 4. In the Lagrangian  f ramework,  this 

6For baryons, we envisage three quarks with configuration space M 4 • M 4 • M 4. In the model, 
in that case, we replace this system with a system consisting of one cq particle with mass m 0 
and two q particles with mass operators gn~ and rh 2, respectively. The corresponding 
configuration space is M 4 • L 2 ( R 3 ) |  and the (mass) 2 observable is M 2 = (rn 0 + rJq 

+ th2) 2 = m~ + rh~ + th~ + 2m0(rh I + rhz)+2rhlrh2. 
71n the construction of the characteristic observables of the q particle we used only the 
rotational group 0(3) from the old space-time symmetry group. In the c relativistic quark 
model the minimal space-time symmetry group of confined quarks is also the group 0(3) as 
was pointed out by K.im et al. (1982). 
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theory is given by the Lagrangian density 

, ~ ( X )  = ' ~ ( r  . . . . .  (~n' O~,u.q)l . . . . .  Op.@n)(X), X ~ 4  (25) 

In transferring this theory to a field theory over q space-time, the one 
possibility is that when we replace the c space-time position vector (x0, x) in 
the argument of fields by the q space-time position operator (-~o,i) satisfy- 
ing (12). This possibility will be discussed elsewhere. The other possibility is 
that when we regard the vector x in the argument of fields as denoting an 
event in M 4 and we replace it by a q event, i.e., in that case we consider the 
fields as (operator-valued) "functions" f --, ~,,(f), a = 1 . . . . .  n, of the rays f 
of L2(R 3). We discuss now shortly this approach to LFT over q relativistic 
space-time (QRLFT) according to the works Banal (1982b, 1983a, c) and 
Banal and Lukhcs (1984) and show that, by applying canonical quantization 
algorithm, the canonical equations as operator equations are formally 
equivalent to the c field equations belonging to Lagrangian density (25). 

Our guiding principle is the locality: all information obtainable from 
the system can be gotten by measuring the system at the points of the 
pertinent space-time model. In CRLFT this principle is formulated in a 
natural way, i.e., the system is described by local fields and local observ- 
ables, the global observables are generated by local ones usually by integrat- 
ing up local observables over spacelike surfaces in I~ 4. In QRLFT the 
situation should be the same, i.e., first the local characteristics (local states, 
observables) of the system should be determined and then the global 
characteristics generated by local ones by integrating up the local character- 
istics over spacelike surfaces 2 in q space-time. 

In this approach the Hilbert realization of the system of local proposi- 
tions (Banai, 1981) of QRLFT is determined by means of a Hilbert A 
module ~ ,  where A is the von Neumann algebra generated by the 
projectors of L2(R 3) (Bahai, 1983c). Thus all informations obtained by local 
measurements on the system are contained by -'~A: the local states can be 
represented by rays ~b, (~It)A =1, of ~ where ( [ )A is the A-valued 
Hermitian inner product of ~,~, and the local bounded observables by 
self-adjoint bounded operators (A-module homomorphisms) in d~ A. The 
expectation value of a local bounded observable F in the local state xb can 
be given by the formula 

F = = ( AFIr A (26) 

To determine the concrete structure of ~ consider the structure of 
CRLFT of Lagrangian (26). This theory prescribes a c mechanical system at 
each point x of a spacelike hypersurface ~ in M 4. One can think of this 
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system as a "fiber bundle" of c mechanical systems over o. This "fiber 
bundle" is of trivial type because (26) prescribes the same c mechanical 
system to each point of o. More precisely, according to the approach of 
Kijowski and Tulczyjew (1979) a phase bundle g: P --* M 4 corresponds to 
the system. The fiber Px = g- l (x )  is the phase space at x ~ M 4. States q~ of 
the c fields are sections of the bundle P and P for a Lagrangian CRLFT 
over M 4 is of trivial type. 

Hence the quantized theory should have a similar "trivial fiber bundle" 
structure, i.e., should describe a q mechanical system at each point p of a 
spacelike hypersurface 2 F in q space-time, the same type of q mechanical 
system at each point. Thus, if the complex separable Hilbert space W is the 
state space of the q mechanical system, the local state space ~ of QRLFT 
should have the trivial A-module form ~ = J~'| In fact, a~'| has the 
required trivial Hilbert bundle structure over any F. For, let ~ be any 
maximal Boolean algebra in ~(L2(R3)) with spectrum space F and B be 
the Abelian von Neumann algebra generated by the elements of ~ .  Then 
the Hilbert B-module ~ |  is a subspace of ~ ' |  and isomorphic to the 
B-module of sections ~ of the trivial Hilbert bundle ,/: ~" • F---, F (cf. 
Dixmier and Douady, 1963). In this sense one may think of ~ = ~ |  as 
the A-module of sections ~k of the trivial "noncommutative" Hilbert bundle 
over q space-time of event space L 2 ( R 3 ) .  8 In QRLFT the q substitute of the 
c phase bundle is this "noncommutative" Hilbert bundle. In this way our 
approach may provide a natural quantization scheme for the approach of 
Kijowski and Tulczyjew (1979) to CRLFT (see Figure 1 and cf. below). 

In keeping with our strategy the system globally is described via 
integrations over the sets of informations obtained by local measurements, 
i.e., over the local state space ~ .  Measures in q space-time are completely 
known by Gleason's (1957) theorem (Banai, 1983b). Particularly, probabil- 
ity measures are determined by von Neumann density operators p ~ A. In 
these cases the global state space is given by the Hilbert space Hp == T r p ( ~ '  
| == (~1~ ~ ~ff| < oo} with scalar product (q~ll~2)p == 
Trp(~11~2) A (Banai, 1983c). Hp describes the q system consisting of an 
infinite collection of q mechanical systems, globally as a q statistical system 

s Using the Fock representation for .gt", the vacuum state in the fiber ~ = 71-t(p)  has the form 
~k0(P) = #'o| where 4'0 is the vacuum state in .,~. A creation operator h~*(p), a = l  . . . . .  n, 
in ~ creates a s t a t e  ~ t a ( P )  = a*~(P)~o(P) in )ffp from this vacuum. This q state at p has 
q numbers (Ql . . . . .  Q, ,  qt, q2, q3) where (qt,  q2, q3) denotes the q numbers of the q event p 
and interpretable as the internal q numbers of the created q state. The new feature of this 
approach that the vacuum of local q system is also labeled by these internal q numbers. 
Having regard to the one particle meaning of q space-time (Sections 2, 3, and 4) we may say 
that the vacuum is filled up by the states of the q particle and if p is rotationally symmetric 
then the vacuum tko(p) is labeled by the internal q numbers of a cq particle. 
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Quantizatqot~ ~ ,g• 

Fig. I 

when the measuring processes of the system is characterized by the density 
operator p (Banai, 1983c). The expectation value of a bounded global 
observable b (a bounded self-adjoint operator in Hp) generated by the local 
one B in the global pure state ~ (a ray of Hp) is 

(qqblq~)0 = Trp(qqBIq~)A (27) 

The scalar product (I)p is invariant under the action of the unitary symme- 
try group of q space-time, thus Hp is a q relativistically invariant object 
over q space-time (cf. Bahai, 1983c), Banai and Lukhes (1984). 

In this framework the canonical quantization method can be con- 
sistently formulated in terms of the unbounded extension )g ' |  of ,/~"| 
where ,4 is the *-algebra of linear operators in L2(R s) (Banal, 1983c). 
According to this algorithm we postulate that the basic variables q~, % = 
OSa/0(9oqb), Vxqs~, Vx%, a = 1 .. . . .  n are local observables represented by 
self-adjoint operators in 6r162174 such that they satisfy the equal time 
commutation rules 

[~,,,~/~] = [~',,,~'~1 = O, ['~,,, ~ ]  = - i8,,~1.1, 

l = l a ~ |  H, 1 H = I ~ A  (28) 

= [ < , o . + A  = 0. [ v .o. +A = [ ,o.  < , , 1  -- - 

[~ = - i V x  ( 2 9 )  

The CCR's (28) have an irreducible solution in ,/g'| unique up to 
A-unitary equivalence, since a natural extension of yon Neumann's theo- 
rem holds true in this framework (Bahai, 1983c). To specify the dynam- 
ics the local time evolution is defined by the one parameter unitary group 
x 0 ~ exp{ - i,g"Xo} in ,g'| where ~ = 9r %, Vxq~) = %00q~ - Za is 
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the Hamiltonian density. Then the formula /~(Xo)=exp{-/o~x0} 
P(O)exp(io~'Xo} defines the time evolution of local observable F. This 
formula in differential form provides the canonical equations 

OoCr.= i[ Jg, cr.l = - o J g / O ~ . - (  OoCg/OVs OVs (30) 

= - ooe/o o- ( o /ov;,o) 

where (29) has been applied. These canonical equations as operator equa- 
tions are formally equivalent to the canonical equations of CRLFT 
[cf. equation (17.7) on p. 118 in Kijowski and Tulczyjew (1979)] obtained 
in the following way. By applying the c field equations and a Legendre 
transformation, we get d.~ = [Oo~r + 0k(0.LP/00kq~) ] deo. + %d(OoeO,,)+ 
(O.oq'/OOkeO.) d(Okl~o~) , then d ~  = - [ 0o~r + Ok( O.s OOkq~)] deo. + OoeO ~ d% 
- (OLP/OOkeO.) d(Ok~.). Hence we get 0o~. = 0~'~'/0%, - 0orr - 
Ok( O*~/OOk~a) = 0 , ~ / 0 ~ .  and O..~/OOkeO~= - O.~/OOkeO ., k =1,2,3, or 

Oo~.= Oo~/O%, 00%= - O ~ / O % +  Ok(OO~/aOkeO.) (31) 

Taking into account the relations Vs = ~ [see Banai, 1983c, equation 
(19)] the equations (30) are formally equivalent to (31). 

Finally we note: (a) The interaction picture can be introduced in this 
approach in a well-defined manner and the corresponding S matrix is free 
of divergences. (b) This approach is a natural extension of the conventional 
Hilbert space formulation of q mechanics. The appropriate language for 
formulating this theory is provided by Takeuti's (1981) q set theory. Our 
conjecture is that q mechanics in the universe V ~a'~, ~ = ~(L2(R3)), equals 
QLFT. The proof of this statement requires, of course, further intensive 
researches both physically and mathematically (cf. Banai, 1983a, c). 

7. CONCLUDING REMARKS 

1. We outlined in this paper the foundations of a q relativity theory 
formulated in terms of the q relativity principle of Davis (1977). As in c 
relativity theory the first objective of this theory should be the construction 
of a q relativistic model of space-time. Our basic thesis for approaching this 
problem is that, according to the philosophical view that space-time is the 
arena of the material processes, and of natural phenomena, the different 
physical theories with different operational foundations should possess 
different models for space-time (cf. Banai, 1983a). Thus the arena of the 
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existence for a c relativistic c particle is ~/~4 and for a c relativistic q 
particle is the Minkowski q space-time of Prugove~ki (1981, 1983). Then 
this arena for a q relativistic q particle should be the projective space 
corresponding to its defining Hilbert space H [the q substitute of M 4 in 
Banal (1983b)]. The main philosophical suggestion of this paper is that these 
different models of space-time are based on one another in a successive 
order according to the hierarchical order of the corresponding theories. The 
deepest level of microscopie world (with respect to our present knowledge) 
should be approached by q relativity theory. A one more higher level of 
microworld should be described by c relativistic q theory and the highest 
level (our macroscopic environment) is approached by c relativity theory. 
We summarized in Table I this suggestion with the corresponding concepts 
in the pertinent theory. 

2. Certainly the greatest mystery of present-day physics is the quark 
puzzle. The quark supporters should like to imagine the hadrons as the 
states of somehow confined quarks. However, this conjecture does not rely 
on a theory with solid foundations as pointed out by Santilli (1981). As we 
saw in Sections 3 and 5 q relativity theory might offer a straightforward 
way for the resolution of this puzzle. One may visualize a q particle at the 
cq level as a pair of "quarks." Then one could try to model these "quarks" 
on this same level assuming a harmonic oscillator force between the quarks 
and obtaining in this way the harmonic oscillator model of "confined" 
quarks. However, the point of our proposal is that, without this assumption, 
the quark separation space-time coordinates fulfil the "quantization condi- 
tion" (8) and in this way the quark pair becomes a single q particle 
"confined" for ever inside the meson. Moreover, as we saw in Section 3, the 
operational introduction of such a q particle does not need the assumption 
of the artificial notion of the quark pair at all. The linear rise of the energy 
of the q particle in (6) and the ensuing "confining" force in (10) would 
follow from the very essence of the q particle. In contrast with the 
"confined" quark hypothesis, i.e., they should be unobservable as individual 
cq particles, now a q particle would be completely observable. Because the 
observation of a q particle amounts to the observation of a complete set of its 
excited mass states, i.e., to the observation of a complete set of cq particles 
with rest masses as e.g., indicated by (17), each resting at the origin of the 
(defining) Lorentz frame L of the q particle at the instant of observation. 
Therefore we suggest that the "'quarks'" should be in fact identified with q 
particles. Furthermore, the gluons as the mediators of the interactions 
among "quarks" in the very fashionable "QCD" should be identified with 
the "(q)  particles" mediating the interactions among q particles. The 
pertinent theory of describing the interactions among q particles with the 
aid of mediators would be the field theory inside q space-time, i.e., 
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the "first" quantized version of a c field theory, in which, roughly speaking, 
the 4-vector (x0,x) is replaced by the operators (~0,:~) satisfying the 
commutation rules (12). We note that one should expect from this theory 
that produces in a natural way the cq particle photon, in this way indicating 
how the totally unitary symmetric (infinitely generated) underlying q 
space-time gives rise to (breaks down) a finitely generated Poincar6 symmet- 
ric space-time at a higher level description. 
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